Five ways the ABACUS label advances nature-based carbon removal


Carbon stored in ecosystems can be highly durable, but it faces persistent, long-term climate risks such as fire, drought, and land use change, which must be responsibly managed. Nature-based carbon removal should seek “effective permanence” — an actual net greenhouse gas benefit to the atmosphere that is equal to, or greater than, the net benefit represented by the credits. In addition, the removal should ensure that this balance can be maintained indefinitely.

On the other hand, agroforestry and restoration projects can catalyze shifts to land use systems that durably enhance carbon storage even beyond what is credited. This can happen through spillover effects, continued carbon removal after the crediting period, and biophysical cooling feedbacks, among other factors. ABACUS includes several methods that improve the likelihood that nature-based carbon remains durably stored — for example, requiring projects to plant ecologically appropriate restoration systems and to create public plans for the longevity of project activities even after the support of carbon revenues.

Related content

Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

One of ABACUS’s key innovations is to limit the crediting period in an effort to maximize uncredited removals. The ABACUS working group found that revenues from credits generated beyond year 30 are mostly immaterial to investment decisions today, due to their heavy discounts. By shortening the crediting period to 40 years maximum — as opposed to as much as 100 years under some voluntary carbon market standards — ABACUS will create a source of uncredited carbon removal that can serve as an additional buffer against future reversals.

Additionally, ABACUS proposes that projects will be required to allocate a portion of carbon credits issued late in the crediting period (i.e., years 31–40) to a “long-term permanence mechanism” such as an enhanced buffer pool or insurance product. Achieving increased confidence in the effective permanence of nature-based carbon credits may require stringing together removals or replacing a moderate-durability credit with a high-durability credit, if and when previously credited removals are reversed. Economically, such a construct is currently likely to be cost effective compared to today’s high-durability carbon dioxide removal.





Source link

We will be happy to hear your thoughts

Leave a reply

Rockstary Reviews
Logo
Shopping cart